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ABSTRACT

The passage of a weak vorticity disturbance through a reactive shock wave, or deto-
nation, is examined by means of a lincarized treatment. Of special interest is the effect
of chemical heat release on the amplification of vorticity in particular, and on the dis-
turbance pattern generated downstream of the detonation in general. Tt is found that the
effect of exothermicity is to amplify the refracted waves. The manner in which the imposed
disturbance alters the structure of the detonation itself is also discussed.
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INTRODUCTION

When a pattern of vorticity in an otherwise uniform stream passes through a plane
shock, it undergoes refraction and amplification, with the simultaneous generation of acous-
tic and entropy signals behind the shock. For small amplitudes of incident disturbance,
a linearized analysis is possible, and has indeed been carried out by several authors; see,
for example, Ribner [1}, McKenzie and Westphal [2] and Anyiwo and Bushnell [3]. The
predictions of the linear theory and departures therefrom have been examined by Zang,
Hussaini and Bushnell [4] via two-dimensional numerical simulations.

The above studies have all been confined to chemically inert flows. With renewed
interest in hypersonic vehicles, there has emerged a need for improved understanding of
shock-turbulence interactions in reacting flows. This paper addresses a specific reactive-
flow configuration, namely, a planar standing detonation wave (reacting shock wave). Such
waves, provided they can be stabilized (still a maf'tc'r'ﬁildbfﬁ){pl()i;ﬂion) have been pro-
posed as an alternative to the SCRAMJET concept in high-speed propulsion (O'Brien
and Kobayashi [5]). Our aim is to examine the interactions of the detonation with a
small-amplitude shear wave as the latter is convected throngh the detonation. This is
accomnplished by means of a linear analysis, which can he thought of as an extension of
Ribner’s [1] for an inert shock. Unlike Ribner, however, we are interested not only in the
effect of the detonation on the disturbance, but also on the manner in which the shape
and structure of the detonation are altered by the disturbance.

THE GOVERNING EQUATIONS

Figure 1 illustrates a stationary, planar, oblique detonation wave, into which flows an
unburnt mixture of reactants from the left, with burnt products r‘mt'rgmg on the right. The
undisturbed flow is assumed to be uniform on either side, with the normal component of
velocity supersonic ahecad of the wave and subsonic behind. In the (z,y) coordinate frame
the detonation shock is represented by r = 0, the r—axis being normal to the shock. (The
analysis assumes that there are no variations in the z—direction.) The (€,) coordinate
frame is aligned with the downstream flow, and the (¢',9') frame with the upstream flow.

Let us now suppose that a planar, steady, shear disturbance, whose amplitude is sinall
and depends only on the cross-stream coordinate 1, is superimposed on the incident stream
(Figure 2). The intent is to compute the perturbed flowfield behind the detonation and
the perturbation of the detonation structure.

It is convenient to nondimensionalize the system. Accordingly, the pressure, temper-
ature and density of the gas, and the mass fraction of the reactant in the mixture, are
referred to their respective values in the unreacted, unperturbed gas ahead of the detona-
tion. Velocities are referred to the frozen sound speed in the unperturbed gas, and lengths
to the characteristic wavelength of the disturbance. Then, the basic equations expressed
in the downstream coordinates (¢, 1) are
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(1a) (p)e + (pv)y =0,

(1b) p(urg +vuy) + (1/7)pe = 0,
(10) ﬂ(”")e + ’U‘U") + (1/»\/)])71 — 0’
v—1
() p(uTg +vTy) — ——(upe + vpy) = cph,
g
(1le) p=pT,
and
(1f) uYe + oYy = —A,
where
(19) A = AEO o~ FIT
c

Here, (u,v) is the gas velocity, ¥ the reactant mass fraction, and p, p and T the density,
pressure and temperature respectively. A single irreversible reaction of type A — D,
governed by Arrhenius kinetics, has been postulated. (The details of the reaction scheme
will only influence the effect of the disturbance on the detonation structure; the cffect of the
detonation on the disturbance depends ouly on the overall heat release.) The dimensionless
parameters v, E and o are, respectively, the ratio of specific heats, the activation energy
and the heat release parameter. These are defined in terms of appropriate dimensional or
reference quantities by the expressions

v=Cp/Cyy, «a= W/C,,-T, E =E/RT,

where ¥ is the reactant mass fraction and T the temperature of the fresh mixture, while
@ is the heat rcleased when a unit mass of the reactant is consumed. The dimensional
activation energy is denoted by E, the gas constant by R and the specific heats at constant
pressure and volume by C}, and C, respectively. Finally, Lg is the characteristic wave length
of the disturbance, ¢ the sound speed in the unburnt gas, and A the pre-exponential factor
in the Arrhenius rate law.

Typically Ly is much larger than the thickness of the detonation, so that on the scale
of the disturbance, the detonation can be treated as a discontinuity in an inert low. When
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examining the effect of the detonation on the disturbance, therefore, equation (1f) can be
replaced by

Y =1 ahead of the detonation, 0 behind the detonation.
However, (1f) will need to be reinstated, and the entire equation set (1) rescaled with

respect to the detonation thickness, when assessing the effect of the disturbance on the
detonation structure.

EFFECT OF DETONATION ON DISTURBANCE

With the detonation treated as a discontinuity, the generalized Rankine-Hugomniot
conditions yicld the following expressions for the state of the gas behind it:

(2¢) "= (17171%21 R : 0 Ot~ 2+ e "
(2b) p=M/m,

(2¢) T=14a+ (-7—”2‘—2(1\-12 — m?),

(2d) p=pT = ?f 14+ a+ (r )(M"’ 7712)] ,

(2¢) w =W or equivalently, mtane = M tané.

Here, mis the normal velocity and w the tangential velocity hehind the di@(‘ontinuity, while
M and W are the corresponding quantities ahead. Observe that M is also the normal
Mach number in the unburnt region. The minimmm value Mej of M, corresponding to a
Chapman-Jouguet wave, is given by

(3) Moy = [1+(y+ Do+ [{1+ (v + Do)? = 1)'/2)'72,
A graph of Mc; ag'\mqt « is shown in Figure 3.
‘Let the perturbed upstream flow be characterized by
(4a) ) U=Uy+Ui, U <<U,
and correspondingly (see Figure 4),

(4h) 0="00+6,, M=>M+M, W=W,+W,
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while all other state variables upstream remain unchanged. (The precise form of U, will
be specified later.) It is now a simple matter to lincarize the jump-relations (2) to obtain
the following expressions for the disturbances immediately behind the detonation front

(identified by the suffix f):

wypfmo = —dcospy[(Uy JUy) — (61 /7) tan po)

Ha
(5a) 1 sing [ + (Ui /Uy) tan o),

vy g /mo = dsingy[(Uy/Us) — (6, /r) tang] — 8, sccpy

(59) + cospolB1r + (U1 /Ug) tan o),
(5¢) pip = yM[2 = (1 = d)/r][(Us/Us) — (6:/r) tan o],
(5d) Tiy=(y-1)Mj(1+ d/r) (U, JUs) — (81 /7) tanpy].

The constant r is simply the ratio of the normal speeds across the detonation,
(G) T = A'{()/Hl(),
while d is defined by

1
o (’)‘ + l)hl()”?()

MY -1
{(MZ —1)2 —-2(v + DaM2}/?

(7) d 1 —yMZ+

The expressions (5) act as boundary conditions for the perturbed flow downstream
of the detonation. The governing equations for this flow are simply the Euler equations
(1a-¢). Upon lincarization about the basic downstream state these reduce to

(8) (1- /‘2)'/‘56 + Yy = = (n).

where 9 is the perturbation stream function, g the Mach number of the undisturbed
downstream flow, defined by

(9) p=(ud/To)'"?,

and ©, the vorticity behind the wave. It can be shown that (2 depends on the cross-stream
coordinate 7 alone, and can therefore he evaluated at the location of the undisturbed front,
again identified by the suffix f, i.e,,

(10) Q1 - - [ DPin + ”In}

Loltg”Y f
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Once 3 is known, the velocity components are given by the expressions
(11) Uy =1, vy = —(1 — i e,

while pressure, temperature and density can be found from

(12a) " = pig+yporio(yy — uy),
-1

(125) T =T+ o)),
o

(12¢) p1 = (1/To)(p1 — poTh).

Now, depending upon the downstrcam Mach number 1, equation (8) is cither elliptic
(y+ < 1) or hyperbolic (j+ > 1). In turn, st is an increasing function of the inclination 6, of
the incident stream for a given upstream normal Mach number M. In fact, there exists a
critical value 4, of ,, given by

(13) tanf, = [{2(1 +a)+ (v - l)jwff —(v+ 1)”"3}/(21\4()2)]1/2’

such that y > 1 for 8 > 8. and y < 1 for 8 < 8. Figure 5 shows a plot of 8, as a function
of the upstream normal Mach number My (more specifically, My/Mc ;) for various values
of the heat-release parameter . Observe that for a CJ —detonation, the downstream flow
is supersonic for all 6, > 0.

Thus far, the formulation has been quite independent of the functional form of the
incident disturbance. Following Ribner [1], et us take a sinusoidal perturbation, i.e.,

(14) Uy = elycosk'y',

where e characterizes the perturbation amplitude and &' is the incident wave munber. The
downstream wave number k, given by

(15) k' cos by = kcospy,

must also satisfy the matching requirement

(16) k'y' = ky

at the front. Therefore,

(17) Uy = €Uy coskn at the front.

The corresponding perturbation in the front inclination may be taken to be
(18) 6, = e(acoskn + bsin ky),
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where a and b are to be determined.

The problem now reduces to the following: using the prescriptions (17) and (18) in
the boundary conditions (5a,b), solve (8) for 4. Then, u, and v; can be found from (11)
and the remaining variables from (12) upon using the conditions (5). Only the results
are given below since computational details are similar to those in Ribner [1]. (We have
clected to display the velocity and pressure ficlds only; temperature and density follow
from (12b,¢) in a straightforward manner.)

For s+ < 1 the solution is

uy /(eUp) = S cos[ky(y — x tanpg) + 8]

19
(19a) + P(x) cos[k,(y — « tan @g) + 8],
(19b) v1/(eUp) = BP(x)sinlky(y — x tanpg) + &,),
(19¢) p1/(eUg) = —yMoP(x)scc g cos[ky(y — x tan o) + 6pl,
where
(20) A =(1— 2?2, 2 =1—p?cos’ po,
(21) ky = kcos by,
and

(220) P(x) = [L/(BONCE + C2)'/2 expl(—k, B [ B2) cos b,
(22h) S = (A? + B*)"*(1/r) cos by,

(22¢) §, = tan" (= DB/A),
(22d) §p = tan"'[(C1 8 — Ca tanp)/(C2 + Ci tan o),
(22¢) b = —tan"'{(ji/B)? cos? g tan pg).

The constants A, B, Cy and C, appearing above have been defined in the Appendix, along
with the constants a and b introduced in (18).

7



For yn > 1,
uy /(eUp) = S cos[ky(y — = tan pq)]

23
(23a) + P coslk,(y —  tan ¢y)),
(23h) vy /(eUp) = AP coslk,(y — x tangy)],
(23c) p1/(eUo) = —yMy P sec py C()stk;y(y — x tan pp)),
where
(24a) P= (C|/7)((‘m fy sinw)/ cos py,
(24b) w = cot™! B,
(24¢) S = (Ar/r) cos by,
(24d) Py = o — w.

An examination of (19) and (23) reveals that the velocity field is made up of a shear
component of amplitude S and a potential-flow component of amplitude P. The shear
component is a plane wave which carries all the vorticity and propagates in the streamwise
direction. The potential component, as Ribner [1] has pointed out, is acoustic in character
and is the sole contributor to the pressure disturbance. It also travels as a wave, but in a
direction inclined at an angle ¢' to the normal, with amplitude remaining constant for the
supersonic case and attenuating exponentially for the subsonic. The subsonic flow involves
phase shifts 8, and é,, while the supersonic flow does not.

The amplitude S and the phase shift 8, are plotted in Figure 6(a,b), against the wave
inclination 8y, at My/Mc; = 1.5 and for various values of the heat release o. The most
dramatic effect occurs at the sonic point, § = 6., where the amplitude increases sharply.
Figure 6(c) displays the maximum amplitude as a function of « for four different values of
the incident Mach number, and reveals that for o beyond 0.5, the graphs are essentially
linear. In Figure 7(a,b,c) the corresponding graphs for P, the amplitude of the potential
component (evaluated at the shock for subsonic flow), and the phase shift §, are shown.
The behavior is similar to that in Figure 6, with one exception: whereas the maximum
amplitude of the shear component increases with increase in My /Mc; (Figure 6c), that of
the potential component decreases (Figure 7¢).

Because of the n'mlm;liforrmrprr‘ssnrn Jump across the front, it develops ripples, and
the resulting deflection of the front from the undisturbed position £ = 0 (obtained by
integrating the front-deflection angle 4,) is found to be

(25) Ay = [F(_[n/(k’}\:[() )](n.2 + ’)2)‘/2 cos(kyy + Stront ),

8
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where k' is the wavenumber of the incident disturbance and a,b (introduced in (18)) are
defined in the Appendix. The quantities (a? + b2)"/2 and égone have been plotted in
Figure 8(a,h) against the wave inclination 6, for different values of My/Mcy. Again,
leat release makes itself felt most significantly at the sonic point. In Figure 8(c), the
maximum of (a? + b%)!/? is plotted as a function of « for various Mach numbers. Unlike
the corresponding graphs of Figures 6(c) and 7(c), the variation with Mach number is
minimal here.

EFFECT OF DISTURBANCE ON DETONATION

Let us now examine the alteration in the structure of the detonation front caused
by the passage of the disturbance. This will be done in the asymptotic limit of large
activation energy. First, it is useful to recall the structure of the undisturbed oblique
detonation, displayed schématically in Fig. 9. The structure consists of a lead shock 5,
across which the state of the mixture suffers a jump but the mass fraction rctains the
upstream value of unity since the shock is inert. Behind the shock lies the induction zone
I in which the reaction is weak, and therefore, the state is undisturbed to leading order.
The induction zone terminates in the fire zone F, which is a thin region of intense reaction.
Behind the fire zone the mixture is fully burnt. The broadest feature of the detonation
structure is the induction zone, whose thickness Lj effectively determines the detonation
thickness. On the Lj scale, the shock is a discontinnity of course, but so is the fire zone in
the limit E — 0o. It can be shown that L; has the asymptotic form

<2 g
(26) Ly = IE";—C"/“,

where Ty is the undisturbed temperature immediately hehind the lead shock. In the large
E limit, it is possible to give an analytical treatment of the induction zone, in which
state variables change by O(E~') and the position of the fire zone is characterized by a
singularity in the induction-zone solution; the so-called thermal runaway. We now show
that the primary cffect of the applied disturbance is to produce relatively large ripples in
the position of the fire zone.

In the induction zone, it is convenient to adopt the coordinate system (f,ﬁ), aligned
with the undisturbed flow immediately behind the lead shock (Fig. 9). The dependent
variables are denoted by hatted quantities as well, and the subseript zero corresponds to
undisturbed flow. Also, the induction-zone thickness Lj is chosen as the reference length.
Then, equations (1a-f) apply again, provided all variables are hatted. Also, the reaction
rate A now has the form

A= -‘l—‘—_{/—l};c”’?/’i’,

C

which, in view of (26), can be expresed as

~

T2 . E E
27 Az—i}"cm){.—~7] .
(27) ol 7T



As before, the state of the gas behind the lead shock can be computed by means of the
jump conditions (2), provided a is sct to zero there.

Although we have chosen to refer all lengths to L; in the induction zone, it must be
recognized that along the shock, i.c., in the y-direction, the proper length scale is still L.
Therefore, on the Ly scale, y-derivatives must be of order L;/Lg, and hence negligible to
an excellent approximation. Thus, for any dependent variable F,

Fy = FE sin@o + Ffl COS¢0 = O(L]/LO) < 1,

whence
F,*, ~ — tml@()Fé.

The governing equations are thus rendered quasi-one-dimensional in the induction zone.

Let us now consider a distinguished limit in which the applied disturbance amplitude
is T /E. Then, for E — o0, the governing equations reduce to

(28a) 1}0/32 4 /30(122 — tan @0132) =0,
(285) Pttty + (1/7)5 = 0,
(28¢) f)oﬁoﬁé —(1/7) tan 95“132 =0,
(28d) poiio T — 7—;—1170,3;. = ac’l”’,
(28e) = pT + Top'.

In the above cquations, primes denote perturbations. It is a simple matter to extract from
these equations, by elimination, a single equation for the temperature perturbation T ie.,

(29) Ty =Te™,
where
1 _n2
(30) - (f‘:’ ) (1/7) ~tn
H()ﬂ() 1 bt II"Z'

and jin is the normal Mach number of the nndisturbed flow immediately behind the shock.
We remark parenthetically that for I' to be positive, ji, < 1/,/7, i.e., the normal flow speed
immediately behind the shock must be less than the isotherinal sound speed, a well-known
restriction (see, for example, Clarke [6]). It is now a simple matter to integrate equation
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(29) provided T!(#}), the value of the temperature perturbation at the shock, is known.
Then, one obtains

(31) T'=—1In [c—j‘: - Fé] .

The actual profile of T" is of less interest than the position at which it becomes singular.
This position is given by

W

(32) € = (/D)™

and defines the location of the fire zone. For the undisturbed detonation, T,’ = 0 and
the fire-zone location is given by ffo = 1/I. The shift in location is therefore éf - 1/T.
Note that the shift is an O(1) quantitity, on the scale of the induction length, while the
disturbance amplitude causing the shift is O(E~"). The applied disturbance, therefore,
has a pronounced effect on the internal structure of the detonation wave. This is illustrated
in Figure 10 for a sinusoidal temperature perturbation at the shock. Once T' is known,
equations (28a-¢) can be integrated, subject to appropriate conditions at the shock, thus
yielding the profiles for all the variables in the induction zone.

CONCLUSIONS

On the whole, then, the effect of exothermicity is to amplify the refracted waves. This
result, although derived here only for steady waves, contradicts that of I(umar, Bushnell
and Hussaini [7]. However, they simulated numerically the interaction of a disturbance
with an oblique shock with equilibrium chemistry, and found that chemistry led to a slight
decrease in amplification. We belicve that their result is biased by the manner in which
they prespecify the degree of reactedness at each station. It would be more appropriate to
compare our results with a direct numerical simulation of the reacting shock, undertaken,
for example, by extending the approach of Zang, Hussaim and Bushnell [4] to reactive
flows.
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APPENDIX

In this Appendix are listed the various constants introduced in the text.

A =sccpo + 2(r — 1) cospg + (af/r)(r — 1) sin ¢y,
B = (b/r)(r — 1)?sin ¢y,

{7—5—"‘—,-6(E+3r for p < 1,
a = e
CHGF "
rEcnr forp > 1,

,_ CF-DE
"=ty pr

C=[d+2r —1—(r = 1)/B2]tangg — [(r — 1)*/82] sin o cos oo,
C'=1-d=2[1+(r -1)cos? gy,
D = AD'/fL,
D' = (r = D1+ (r — 1) cos? g,
E=14d+2(r - 1)(F?/B2) cos® oo,
E' = (r —1)?singy cos gy — (d + r)tan g,
F=(8/8)F,

F' = 2(r — 1) sin¢q cos g,
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1 — ftanyo

G= B+ tan g ’

C,=ar”'D' - F,

C2 = bT_ID’.
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Figure 1. Illustration of a stationary, planar, oblique detonation wave and the

coordinate frame.
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Dislurbance

Figure 2. Schematic of a planar, steady, shear disturbance superimposed on
the incident stream. :
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Figure 3. Plot of the Chapman-Jouguet Mach number M versus the heat
release parameter Q.
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Figure 4. Schematic of the perturbed upstream flow showing the nomencla-
ture. -
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Figure 8a. Plot of \/(a2+ b?) versus the wave inclination angle 0,, at
Mo/ Mgy =15, fora=0,0.1, 05, 1, 5.
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Figure 8b. Plot of &, versus the wave inclination angle 6, at
Mo/ MCJ = 1.5, for o = 0, O], 05, 1, 5.
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Figure 8c. Plot of the maximum of ‘/(a2+ brz)ﬂ versus the heat release
parameter o, for Mo/ Mc; = 1.5, 5, 10, 14, at 6.. (Graphs for Mo/ M¢; of
5, 10, and 15 are indistinguishable). -
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Figure 9. Schematic of the coordinate systrerm aligned with the undisturbed
flow immediately behind the lead shock.
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Figure 10. Plot of the unperturbed (dashed) and perturbed (solid) fire-zone
location for a sinusoidal temperature perturbation at the shock. -
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